
Learning to Design Accurate Deep Learning
Accelerators with Inaccurate Multipliers

Paras Jain1*, Safeen Huda2, Martin Maas2, Joseph E. Gonzalez1, Ion Stoica1 and Azalia Mirhoseini2
UC Berkeley1, Google2

Corresponding author: parasj@berkeley.edu

Abstract—Approximate computing is a promising way to im-
prove the power efficiency of deep learning. While recent work
proposes new arithmetic circuits (adders and multipliers) that
consume substantially less power at the cost of computation
errors, these approximate circuits decrease the end-to-end accu-
racy of common models. We present AutoApprox, a framework
to automatically generate approximate low-power deep learning
accelerators without any accuracy loss. AutoApprox generates
a wide range of approximate ASIC accelerators with a TPUv3
systolic-array template. AutoApprox uses a learned router to
assign each DNN layer to an approximate systolic array from
a bank of arrays with varying approximation levels. By tailoring
this routing for a specific neural network architecture, we discover
circuit designs without the accuracy penalty from prior methods.
Moreover, AutoApprox optimizes for the end-to-end performance,
power and area of the the whole chip and PE mapping rather than
simply measuring the performance of the arithmetic units in iso-
lation. To our knowledge, our work is the first to demonstrate the
effectiveness of custom-tailored approximate circuits in delivering
significant chip-level energy savings with zero accuracy loss on
a large-scale dataset such as ImageNet. AutoApprox synthesizes
a novel approximate accelerator based on the TPU that reduces
end-to-end power consumption by 3.2% and area by 5.2% at a
sub-10nm process with no degradation in ImageNet validation
top-1 and top-5 accuracy.

Index Terms—approximate computing, deep learning, TPU

While the continued scaling of neural networks has enabled
higher task accuracy, large models are increasingly energy-
intensive to deploy. For example, model serving constitutes the
majority (up to 80-90%) of deep learning workloads at Facebook
and Amazon AWS [8]. Therefore, it is critical to improve the
energy-efficiency of inference accelerators to reduce the global
energy consumption demands of deep learning.

In systolic-array accelerators, Zimmer et al. [22] report that
over 30% of PE energy is consumed by arithmetic units [17].
The current practice to improve the power-efficiency of these
arithmetic units is to substitute full-precision floating-point
calculations with low-bit precision quantized operations such
as 8-bit arithmetic [6]. However, low-bit quantization degrades
accuracy [2]. The optimal precision for an architecture also
varies widely between layers [3].

Emerging work proposes novel approximate circuits that
are more power-efficient than quantized operators [1]. These
approximate multipliers and adders do not simply reduce the bit-
precision of exact arithmetic but rather tailor approximations
to a specific numerical distribution observed in deployment.
Approximate circuits thereby enable a better power-accuracy
trade-off than quantization which uniformly approximates all

*Work done while at Google

Approximate matrix multiplier bank

error = 10%
pwr = 10%

error = 0%
pwr = 100%

error = 2%
pwr = 70%

Learned
per-layer
router (Z)

Activation buffer
Result of previous layer

Multi-tile
MXU unit

Figure 1: AutoApprox synthesizes approximate systolic-array
accelerators without accuracy loss. Error-tolerant layers are
routed to approximate cores for significant power savings.

inputs. Figure 2 shows the error for a single approximate
multiplier. This multiplier concentrates error on select sparse
values but consumes 3.61× less energy than an exact multiplier.

Prior work in approximate computing for DNNs finds
accuracy drops under errors [19, 14]. These approaches evaluate
small-scale models and datasets. For example, Mrazek et al.
[15] approximate just one layer of an 8-layer ResNet. Moreover,
most prior work evaluates chip energy using the multiplier-only
energy. However, we find that multiplier-only energy is only
weakly correlated with total chip energy consumption as it
excludes other factors (Figure 4).

To utilize approximate cores while preserving high accuracy,
we take advantage of dark silicon by placing approximate
systolic arrays adjacent to an optional exact array, as shown in
Figure 1. At runtime, we dynamically route error-tolerant DNN
layers to an array with low dynamic power consumption. More
sensitive layers are evaluated on the exact systolic array.

We propose AutoApprox, a framework to automatically
synthesize low-power approximate ASIC accelerators with
zero accuracy loss with no retraining required. Using a modified
TPUv3 template, AutoApprox generates a diverse set of efficient
designs with a reconfigurable routing array to a bank of
systolic arrays containing approximate multipliers [13]. By co-
optimizing the mapping of approximate systolic arrays to layers,
we avoid accuracy losses due to homogeneous approximation [3]
by custom-tailoring the approximation for different fine-grained
portions of the computation graph. We also perform evaluation
on large-scale datasets and models, a first in the domain of
functionally-approximate deep learning accelerators.

We evaluate AutoApprox with ResNet-50 models trained

0
50

100
150

200
250

0
50

100
150

200
250

0
10
20
30
40
50
60
70
80

Approximation
error (%)

Multiplicand
value

Multiplier
value

Figure 2: Approximate multipliers trade off exact computation
with power efficiency. The visualized multiplier consumes 3.61×
less energy than a quantized multipler at the cost of 4.2% relative
error. By carefully matching approximate multipliers with each
layer in a neural network, we are able to reduce inference energy
usage with zero end-to-end accuracy loss.

on the ImageNet dataset as well as VGG-19 on the CIFAR-
10 dataset. On a sub-10nm process node, we demonstrate
our search methodology is Pareto-optimal when compared to
other baselines. AutoApprox realizes zero ImageNet validation
accuracy loss for ResNet-50 with savings of up to 3.2% in
power consumption and up to 5.2% in area.
We make the following contributions:

• We propose AutoApprox, a framework for the design of
zero-loss approximate DNN accelerators.

• We evaluate the accuracy of approximate designs with end-
to-end simulation on significantly larger datasets than prior
work. In order to make end-to-end evaluation tractable, we
accelerate circuit simulation by 7200×.

• In order to search the combinatorial space of accelerator
designs, we develop a Bayesian optimizer to efficiently
find low-power accurate designs.

• We demonstrate AutoApprox improves the power-efficiency
of a TPU-based design without any added area while
maintaining end-to-end accuracy.

I. RELATED WORK

PARAS: Cite papers
Approximate computing: Analog computing offers large
potential power savings; however, these methods are non-
deterministic and therefore result in a large accuracy degradation
while remaining hard to deploy. We instead focus on functionally-
approximate circuits which replace power-intensive segments
of a circuit with inaccurate but simpler components. There
are many approximate arithmetic units; for example, prior
work Kim et al. [12] removes overflow logic from a 16-bit
adder for 2.3× multiplier-only savings. Specifically, we consider
approximate multipliers; Horowitz [9] finds that multipliers
are 7× more energy intensive than comparable adders. We
synthesize approximate accelerators using the open-source bank
of approximate multipliers from Mrazek et al. [13].

Table I: Overview of prior approximate computing methods for
deep networks with comparison of key features

Largest
dataset

Model
MACs

Retrain
free?

Zero
loss?

Venkataramani et al. [19] CIFAR-10 <1M 7 7
Zhang et al. [21] CALTECH <1M 7 7
Sarwar et al. [16] CIFAR-100 <1M 7 7
Mrazek et al. [15] CIFAR-10 21M 3 7
Mrazek et al. [14] CIFAR-10 120M 3 7

AutoApprox (ours) ImageNet-1k 2B 3 3

Approximate DNN hardware: The of deep learning’s
resiliency to noise motivates the use of approximate hardware.
Mrazek et al. [15] converts a single layer from an 8-layer
ResNet to use an approximate multiplier. However, this work
does not consider the effects of cross-layer approximation.
ALWANN [14] searches for a mapping of layers to one of
several fixed approximate units. However, ALWANN endures a
0.6% accuracy drop for ResNet-50 while our method results in
no accuracy loss. We also evaluate approximate designs on the
large-scale ImageNet dataset; ALWANN evaluates on CIFAR-10
at low-resolution. Finally, we report real system-wide power
numbers. Figure 4 demonstrates the need to evaluate energy
usage at the chip level rather multiplier.

II. AUTOAPPROX: A DESIGN FRAMEWORK FOR ZERO-LOSS
APPROXIMATE DNN ACCELERATORS

AutoApprox is an automated design framework for systolic-
array based DNN accelerators. AutoApprox is a full-stack
framework (see system diagram in Figure 3) as it benchmarks
candidate designs post-synthesis and evaluates designs using
end-to-end workload metrics like top-1 accuracy. Given an
architectural template design and a set of deep neural network
workloads, AutoApprox generates both a hardware design and
a heterogeneous mapping of neural network layers.

Below, we cover key system components: (a) architectural
template, (b) systolic array code generation, (c) circuit simulation
for accuracy estimation and (d) chip performance estimation.
We describe circuit search and the layer mapping in Section III.

A. TPUv3-based architectural template

We benchmark a production design based on the TPUv3 [10,
11] datacenter accelerator. The TPUv3 contains several large
systolic arrays for efficient matrix-matrix multiplication. Each
array is a 2D grid of processing elements (PEs) with one or
more multiply-and-accumulate (MAC) units per PE. Global
memory is shared across all systolic arrays.

Our proposed architecture, shown in Figure 1, replaces a
single exact MXU with a bank of several variants of approximate
MXUs. At runtime, inputs are routed to one of these units
based on a precomputed mapping. If we retain the exact MXU,
this strategy can utilize the exact MXU for non-approximate
workloads, thereby guaranteeing correctness while enabling
power-savings for error-tolerant workloads. This approach does
not require modification to compiler stacks; it simply requires the

DNN

Architectural
Template

⇤<latexit sha1_base64="aETUmmg4d7Fr1+uPFFVtljBLhmc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgHsJuFPQY9OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpe5flSv2qVL3N4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3FPjLI=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

Bank of
approx.
MACs

Objective function

Power EstimationE2E Accuracy
Estimation%

Systolic Array Generator

Approximate MAC search
and Layerwise mapping

Figure 3: AutoApprox searches for low-power high-accuracy
accelerators custom-tailored for a set of DNNs. Each search iter-
ation generates a new approximate accelerator design given an
architectural template and a bank of approximate MACs. Search
minimizes energy subject to end-to-end accuracy constraints.

addition of a ROUTE instruction. Unused MXUs for a specific
layer are turned off to save power.

Modern inference chips are limited by thermal dissipation.
The dark silicon regime trades area for improved power
efficiency where specialized functional units accelerate specific
workloads but are otherwise inactive [7, 20]. In TPUv3, systolic
arrays are extremely power-dense but only account for 20%
of total die-area [11]. Therefore, our approach of adding
auxiliary approximate systolic arrays promises to improve power
efficiency with minimal die-area impact.

B. Systolic array generation

Given the TPU-v3 template and a list of candidate approxi-
mate multipliers, we generate any necessary systolic arrays
and an accelerator. The list of approximate multipliers for
the design comes from the AutoApprox ML-guided search
procedure, described in Sec. III. Code generation yields both
Verilog and C++ implementations.

C. Circuit simulation for end-to-end accuracy estimation

To precisely model the impact of approximation on end-to-
end accuracy, we simulate hardware designs with sampled inputs
from a target dataset. If we directly simulate an approximate
MAC, a single exact multiplication takes 3.75± 0.95 microsec-
onds on a high-end server while a single inference of ResNet-50
takes 4.2 hours and 23 years for all of ImageNet.

We leverage caching for memoization and matrix decom-
position to make caching memory-efficient. Look-up tables
(LUTs) have been used to simulate approximate circuits [15];
we use caching to accelerate simulation for 8-bit inputs by
7200x (Figure 5). However, storing full LUTs precludes GPU
acceleration as two 16-bit inputs would require over 68GB.
As shown in Figure 6, cache tables are low-rank. Thus, we
can factorize the matrices without introducing significant error;
when storing the N -bit error matrix ε ∈ R2N×2N , we compute

a truncated singular value decomposition with k � 2N with
total memory consumption of O(nk).

D. Performance estimation (power, area, delay)

Multiplier-only power is poorly correlated with total matrix-
multiply unit (MXU) power in Figure 4. However, prior work
solely considers multiplier-only power for simplicity. These
designs are likely therefore suboptimal as they do not consider
whole-chip power metrics and ignore power consumption due
to interconnect and memory. By evaluating at a sub-10nm
process using Synopsys’ physically-aware Design Compiler
(Topographical) tool, we ensure our designs correlate with real
end-to-end power savings. We also assume a single clock domain
in our architecture whose frequency is dictated by the slowest
MXU variant on the chip. A single clock domain is conservative
but simple to realize in actual hardware.

III. APPROXIMATE MAC SEARCH AND LAYER MAPPING

In order to preserve high end-to-end task accuracy, we
must carefully consider which portions of a workload are
approximation tolerant. Dong et al. [3] find that the optimal
approximation level changes dramatically between different
layers of a neural network. To custom-tailor hardware to DNN
approximation tolerance, we jointly consider the task of selecting
approximate units for a chip design concurrently with the
mapping of layers onto said chip’s PE.

However, each of these two subproblems are themselves
challenging combinatorial optimization problems. Together, they
represent a O(KN) search space with K candidate approximate
multiplier designs and N neural network layers to map; we
explore workloads with up to a 2268 search space.

We leverage Bayesian optimization with Gaussian Process
(GP) bandits [18] to efficiently discover high-accuracy yet
energy-efficient configurations of cross-layer approximate cir-
cuits. This approach improves the sample efficiency of black-box
optimization by modeling the unknown reward function.

A. Formalization of the approximate circuit mapping problem

Consider the following optimization problem to find a
mapping of approximate circuits to deep network layers:

min
z

N∑
i=1

qᵀi Zi (1a)

s.t. ACC(Z) ≥ τ (1b)
AREA(Z) ≤ φ (1c)

K∑
j=1

Zij = 1 ∀i ∈ {1, . . . , N} (1d)

Z ∈ {0, 1}N×K (1e)

The decision variable Zi represents a one-hot vector to
denote which of the K approximate circuits are mapped to
a layer. The objective 1a models the total energy consumption
to evaluate a single forward pass where qi ∈ RK

+ represents
a vector containing the energy to evaluate layer i for each of
the K approximate multipliers. Constraints 1b and 1c define

0.130 0.132 0.134 0.136 0.138 0.140 0.142 0.144 0.146
Multiplier-only energy consumption (mJ)

0.90

0.92

0.94

0.96

0.98

1.00

Re
la

tiv
e

sy
st

ol
ic

ar
ra

y
en

er
gy

 c
on

su
m

pt
io

n

Figure 4: The energy consumed by a single ap-
proximate multiplier and the energy consumed
by the whole matrix multiply unit (MXU) are
only weakly correlated.

Figure 5: By caching circuit eval-
uations, we accelerate the evalua-
tion of approximate multipliers by
7200× over direct simulation.

0 50 100 150 200 250
Principal Component

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Ei

ge
nv

al
ue

Low error (0.1%)
Mid error (4%)
High error (22%)

Figure 6: Pre-computed outputs for approx-
imate circuits are low-rank. We compress
lookup tables to accelerate inference while
reducing memory requirements from our
simulator.

the minimum accuracy targets and chip area limit respectively.
Constraints 1d and 1e ensure that Zi is one-hot and binary.

Bayesian optimization struggles with high dimensional states,
discrete structures and constraints. In the following, we describe
our approach to improve search performance via an uncon-
strained continuous reformulation.

B. Calibration of single-layer approximation

Implementing an efficient and accurate accuracy oracle ACC
is extremely challenging due to cross-layer dependencies. To
reduce the complexity of the search space, we perform an
offline study where only one layer is approximate at a time.
This single-layer calibration provides an upper-bound on the
expected accuracy from cross-layer approximation. We then
prune mappings with exceptionally poor expected accuracy.

C. Continuous relaxation of state space

Given the large number of states, Bayesian optimizers struggle
to explore diverse solutions. We relax Z to a continuous variable
which dramatically improves search sample efficiency. The
calibration establishes an upper bound to the accuracy for a
layer. The continuous relaxation searches per-layer for a target
accuracy instead of a single categorical multiplier.

However, the objective function is no longer linear. Instead,
for each of N layers, we define a step-wise cost function
Qi : R −→ R to map a real-valued choice of an approximate
multiplier to the energy-consumption for the closest layer. The
new objective is min

∑N
i=1Qi(Zi).

D. Unconstrained optimization with barrier functions

While recent work has begun to explore multi-objective
optimization using Bayesian optimization, these approaches
are generally significantly less sample-efficient than single-
objective optimizers. We can utilize the barrier method [5]
to remove constraints 1b and 1c. Barrier methods replace each
constraint of form x ≤ b with a penalty in the objective function
B(x, b) = − log(b − x) or B(x, b) = ex−b. As x approaches
the constraint b, the penalty trends to ∞. Utilizing a barrier
method, we express our objective as:

N∑
i=1

Qi(Zi) + α1B(τ,ACC(Z)) + α2B(AREA(Z), φ)

The exponential barrier function as it allows for soft constraint
violations. For the accuracy term, we use a target accuracy
τ = 0.68 and weight α1 = 8. For the area term, we use a target
(including exact MXU) of φ = 400% and a scale α2 = 1.2.

IV. EXPERIMENTS

We focus our evaluation on the ImageNet dataset, a large-
scale dataset for image classification. ImageNet is a challenging
dataset with 1M training images and 1000 classes, where each
image is resized to 224× 224.

Prior work is predominantly evaluated on CIFAR-10. How-
ever, CIFAR-10 is a small dataset and not representative of
modern computer vision workloads. Specifically, CIFAR-10
contains small 32 × 32 images and only 10 classes that are
well-separated. ImageNet, however, is far more challenging as
it contains many similar classes where approximation can blend
the decision boundary between classes.

We evaluate power savings and accuracy with the ResNet-50
architecture. This model contains many interesting features
that may affect approximation sensitivity, such as residual
connections and batch normalization. As ResNet-50 is a deep
network with many layers, it is a compelling target for studying
cross-layer approximations and represents a practical application
that is widely deployed today on production accelerators. To
accelerate search, we perform cross-layer search experiments
using a 10% sample of the ImageNet validation set.

In searching for competitive architectures, we evaluate approx-
imate multiplier variants from prior work [13]. We synthesized a
total of 36 16× 16 systolic arrays for the different approximate
multiplier variants in a commercial sub-10nm process using
Synopsys’ physical-aware Design Compiler (topographical) tool,
which provided performance, power, and area.

As motivated by Figure 4, we evaluate power, performance,
and area of the systolic array rather than the individual
multipliers. Finally, we assume a single clock domain shared
by all approximate systolic arrays in our architecture so we
scale power estimates for each approximate systolic array to
the common clock frequency.

Table II: Pareto-optimal results for power, area and accuracy on the ImageNet validation set for ResNet-50 with a sub-10nm
TPUv3 architecture. Power and area are reported relative to the original exact circuit (1.0× represents the exact quantized chip).
AutoApprox finds approximate circuits that reduce energy consumption by 3.2% and area by 5.2% with no accuracy loss.

Hardware design Total chip energy
(relative to exact)

Total chip area
(exact + approx) Top-1 accuracy Top-5 accuracy

Baseline: Exact 8-bit MXU 1.000× 1.0000× 72.1% 90.7%

Greedy layerwise search 0.976× 1.281× 71.2% 90.3%
Bayesian optimization search using Vizier 0.969× 2.712× 65.8% 86.2%

AutoApprox-S (power optimized) 0.939× 1.844× 66.5% 87.4%
AutoApprox-L (balanced) 0.968× 0.948× 72.5% 90.7%
AutoApprox-XL (accuracy optimized) 1.024× 1.189× 73.1% 91.1%

0.940.93 0.95 0.96 0.97 0.98 0.99 1.00
Normalized power consumption

0

20

40

60

80

CI
FA
R-
10

To
p-
1
ac
cu
ra
cy

(%
)

AutoApprox
Discrete BO
Random

Figure 7: VGG-19 on CIFAR-10 AutoApprox finds more
accurate approximate mappings at every power level relative
to baseline approaches. AutoApprox reduces end-to-end power
consumption by 2% without accuracy loss.

V. EVALUATION

A. How much power-savings can approximation achieve with
minimal-to-no accuracy loss?

Since approximate arithmetic circuits can be integrated into
hardware alongside quantization, we study how much additional
power is saved beyond quantization and how much, if any,
accuracy is lost from approximation. We benchmark results on
the ImageNet validation set at full resolution with the ResNet-
50 architecture. We compare against three key baselines: (1)
a circuit using an exact 8-bit multiplier, (2) an exhaustive
greedy baseline mapping a single layer to a single approximate
multiplier, similar to the method proposed by Mrazek et al.
[15] and (3) baseline search with the black-box Bayesian
optimization toolkit Vizier. We consider the Vizier baseline
to perform similarly to Mrazek et al. [14] as both rely on com-
binatorial black-box optimization. For AutoApprox, we report
three pareto-optimal designs: AutoApprox-S, AutoApprox-L
and AutoApprox-XL. These configurations represent a power
optimized, a balanced and an accuracy optimized configuration.

We compare relative power consumption and area as well as
validation accuracy in Table II. AutoApprox discovers a circuit,
labeled AutoApprox-L, with 3.2% lower energy consumption
and 5.2% less circuit area, while demonstrating higher accuracy
than the quantized baseline. We also discover a lower-power
approximate circuit with 6.1% less energy consumption, labelled

0.90 0.92 0.94 0.96 0.98 1.00
Normalized power consumption

0

10

20

30

40

50

60

70

80

To
p-

1
ac

cu
ra

cy
 (%

)

AutoApprox
Discrete BO
Single layer grid

Figure 8: ResNet-50 on ImageNet AutoApprox scales to
large models and datasets. The baseline Bayesian optimization
framework fails to achieve zero-accuracy loss configurations
while the grid search is unable to discover low-power designs.

AutoApprox-S; however, it degrades ImageNet validation top-1
and top-5 accuracy by 5.6% and 3.3% respectively.

Surprisingly, AutoApprox-XL discovers a configuration with
1.0% higher top-1 accuracy. We hypothesize that approximations
introduce regularization, similar to how pruning can improve
generalization in the Lottery Ticket Hypothesis [4].

B. How does AutoApprox compare with other search methods?

We evaluate the energy efficiency of AutoApprox by ex-
amining the final Pareto-optimal trade-off between power and
accuracy. We compare our approach to the greedy and Bayesian
optimization search methods for a similar period of time.

Figure 7 compares the final power-accuracy Pareto curves
for each method with a VGG-19 model trained over CIFAR-10.
AutoApprox discovers a higher accuracy mapping than all base-
lines at every power consumption level. Notably, AutoApprox
finds a high-accuracy design with 2% power savings end-to-end.
We also compare against baseline search methods with the larger
ResNet-50 model trained over ImageNet in Figure 8.

C. Ablation: Understanding AutoApprox mappings

Figure 9 displays the ImageNet validation set accuracy when
substituting a single convolution (out of 52) with an approximate
multiplier. On the horizontal axis, we rank each multipliers by
the multiplier’s expected mean relative error over a uniform
distribution of inputs. Some layers are error tolerant (e.g. 31,

Im
ag

eN
et

 v
al

id
at

io
n

to
p-

1
ac

cu
ra

cy

00 01 02 03 04 05 06 07

08 09 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51

Mean Relative Error for multiplier

52

Figure 9: Understanding AutoApprox mappings Some layers
are more robust to approximation (e.g. layer 31) than others
(e.g. layer 1).

35 or 41). As increasingly approximate multipliers are used,
end-to-end accuracy is preserved. However, certain layers (e.g.
1, 4 or 49) suffer dramatic accuracy drops. This observation
further validates our layer-by-layer tuning approach.

VI. CONCLUSION

We propose AutoApprox, a framework that leverages approxi-
mate circuit design to generate energy-efficient inference circuits
without any accuracy loss. Using a TPUv3 template design, we
discover an efficient approximate accelerator that saves up to
3.2% of chip power consumption at zero-loss. By dynamically
routing each layer of a neural network at runtime, we ensure
only error-tolerant layers are routed to an approximate systolic
array. Moreover, AutoApprox requires no major changes to the
compiler stack thereby making deployment straightforward. We
develop a scalable method that efficiently searches over the space
of possible mappings of circuits to model layers with the goal of
optimizing for energy while maintaining the end-to-end model
accuracy. We demonstrate that we can substantially reduce the
energy consumed on ImageNet inference at a sub-10nm process
with no degradation in accuracy.

ACKNOWLEDGEMENTS

We thank Jeff Dean for inspiring us with the idea. We also
thank Pulkit Bhuwalka, Christopher Clark, Anna Goldie, Jenny
Huang, Ajay Jain, Azade Nazi, Nathan Pemberton, Suharsh
Sivakumar, Ebrahim Songhori and Cliff Young for their support.

REFERENCES

[1] C. Chen, J. Choi, K. Gopalakrishnan, V. Srinivasan, and
S. Venkataramani. Exploiting approximate computing for
deep learning acceleration. In DATE, 2018.

[2] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie. Model com-
pression and hardware acceleration for neural networks:
A comprehensive survey. Proceedings of the IEEE, 2020.

[3] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and
K. Keutzer. Hawq: Hessian aware quantization of neural
networks with mixed-precision. In CVPR, 2019.

[4] J. Frankle and M. Carbin. The lottery ticket hypothesis:
Finding sparse, trainable neural networks, 2019.

[5] R. Frisch. The multiplex method for linear programming.
The Indian Journal of Statistics (1933-1960), 1957.

[6] S. Gupta, A. Agrawal, K. Gopalakrishnan, and
P. Narayanan. Deep learning with limited numerical
precision. In ICML, 2015.

[7] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Toward dark silicon in servers. IEEE Micro, 2011.

[8] K. Hazelwood et al. Applied machine learning at Facebook:
A datacenter infrastructure perspective. In HPCA, 2018.

[9] M. Horowitz. Computing’s energy problem (and what we
can do about it). In ISSCC, 2014.

[10] N. P. Jouppi et al. In-datacenter performance analysis of
a tensor processing unit. In ISCA, 2017.

[11] N. P. Jouppi et al. A domain-specific supercomputer for
training deep neural networks. CACM, 2020.

[12] Y. Kim, Y. Zhang, and P. Li. An energy efficient
approximate adder with carry skip for error resilient
neuromorphic vlsi systems. In ICCAD, 2013.

[13] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina.
EvoApproxSb: Library of approximate adders and multipli-
ers for circuit design and benchmarking of approximation
methods. In DATE, 2017.

[14] V. Mrazek, Z. Vasicek, L. Sekanina, M. A. Hanif, and
M. Shafique. ALWANN: Automatic layer-wise approxima-
tion of deep neural network accelerators without retraining.
ICCAD, 2019.

[15] V. Mrazek, L. Sekanina, and Z. Vasicek. Using libraries
of approximate circuits in design of hardware accelerators
of deep neural networks. In AICAS, 2020.

[16] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan,
and K. Roy. Energy-efficient neural computing with
approximate multipliers. JETC, 2018.

[17] Y. S. Shao et al. Simba: Scaling deep-learning inference
with multi-chip-module-based architecture. In MICRO,
2019.

[18] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger.
Gaussian process optimization in the bandit setting: No
regret and experimental design. arXiv, 2009.

[19] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan.
AxNN: Energy-efficient neuromorphic systems using ap-
proximate computing. In ISLPED, 2014.

[20] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia,
V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B.
Taylor. Conservation cores: Reducing the energy of mature
computations. In ASPLOS, ASPLOS, 2010.

[21] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu.
ApproxANN: An approximate computing framework for
artificial neural network. In DATE, 2015.

[22] B. Zimmer et al. A 0.32–128 tops, scalable multi-chip-
module-based deep neural network inference accelerator
with ground-referenced signaling in 16 nm. ISSCC, 2020.

	Related Work
	AutoApprox: a design framework for zero-loss approximate dnn accelerators
	TPUv3-based architectural template
	Systolic array generation
	Circuit simulation for end-to-end accuracy estimation
	Performance estimation (power, area, delay)

	Approximate MAC search and layer mapping
	Formalization of the approximate circuit mapping problem
	Calibration of single-layer approximation
	Continuous relaxation of state space
	Unconstrained optimization with barrier functions

	Experiments
	Evaluation
	How much power-savings can approximation achieve with minimal-to-no accuracy loss?
	How does AutoApprox compare with other search methods?
	Ablation: Understanding AutoApprox mappings

	Conclusion

