
4.2 Formulating an Integer Linear Program assuming unlimited RAM

To represent admissible execution plans, we encode sequences of operation evaluations
via T ⇥ n binary decision variable matrices R and S that indicate whether a node is to be
computed and whether it is to be checkpointed at each point in evaluation. In each matrix,
column i corresponds to operation vi and row t defines the t-th stage of the schedule. In
our encoding, each operation can be evaluated at most once per stage.

Let Rt,i 2 {0, 1} be a binary variable, where Rt,i = 1 indicates that operation i should
evaluated in stage t. This computation has cost Ci � 0 in FLOPs or latency, and the result
of the operation consumes memory Mi � 0 in bytes.

Further, let St,i 2 {0, 1} indicate that the result of operation i should be retained in memory
at stage t � 1 until stage t, such that the result is available for use during stage t. This
generalizes checkpointing [16, 17, 26, 27, 28], as values can be retained and deallocated up
to T times in our schedules.

With arbitrarily many stages (large T), coupled with some memory deallocation policy
(Section 4.3), R and S are sufficient to express all admissible evaluation schedules for the
Weighted Rematerialization Problem. Informed by prior literature [16], a linear-chain
graph of n nodes can be evaluated with constant memory and O(n2) operations. Thus, we
use T = n stages, allowing schedules with O(n2) operations to be expressed. While this is
a simplifying assumption, in practice, n stages are sufficient for practical networks and
memory budgets in our experiments.

First, consider neural network evaluation on a processor with ample memory. Even
without a memory constraint, our solver must ensure that checkpointed and computed op-
erations have dependencies resident in memory. Minimizing the total cost of computation
across stages with dependency constraints yields objective (3a):

arg min
R, S, U, FREE

n

Â
t=1

t

Â
i=1

CiRt,i (1a)

subject to
Rt,j Rt,i + St,i (1b)

St+1,i Rt,i + St,i (1c)
Rt,t = 1 (1d)
Ut,i budget (1e)

R, S, U 2 {0, 1}n⇥n (1f)

7

Checkmate: Breaking the Memory Wall
with Optimal Tensor Rematerialization

Paras Jain, Ajay Jain, Ani Nrusimha, Amir Gholami,
Pieter Abbeel, Kurt Keutzer, Joseph Gonzalez, Ion Stoica

Code and paper:
checkmateai.github.io
Email me:
parasj@berkeley.edu
To appear at MLSys 2020

Overview
• Problem: Limited memory prevents the development of

new deep learning models, but compute is growing quickly.
• We tradeoff memory and compute with an optimal strategy

for arbitrary DNN memory checkpointing.
• Formulation supports arbitrary DAGs and is both

hardware-aware and memory-aware.
• Up to 5x higher batch sizes, 1.2x speedups.
• Integration with just one line of code.

3. Real DNNs are non-linear

2. Layer RAM usages vary

1. Layer runtimes vary

In VGG, 107x difference in
early and late layer FLOPS.

Why are heuristics suboptimal?

Backprop space-time tradeoff

A

B

C

D

E

∇E

E

∇D

D

∇C ∇B ∇A

C B

Time

RAM
Peak RAM

Time

RAM

Recomputation

A

B

C

B

D

A

E

C

∇E ∇D

D

A B C ∇C

…

Peak RAM

E

Label Loss

∇E

∇D

∇C

∇B

∇AA

B

C

D

E

• Most memory is used by activations, not parameters.
• Can reduce memory usage by deleting &

recomputing activations.

• This work: How to minimize recomputation while using
less than the GPU memory budget?

Rematerialization ILP

Creating new applications with Checkmate

Evaluation

22 26 22
101

191 217

18 42 33
118

223

448

21 42 39

165
231

504

57 60 62

193
289

1105

U-Net (VGG) FCN8 SegNet ResNet50 VGG19 MobileNet
0

500

1000
M
ax

ba
tc
h
si
ze

fe
as

ib
le

Checkpoint all Chen et al. Chen et al. greedy Checkmate (proposed)

5x larger
than TF 2.0

Checkmate optimizes the evaluation
plan using a per-operation cost
model, profiled on the target GPU.

Layers significantly differ in
memory usage.

LP construction
and optimization

(minutes)
Rebuild

static graph with
rematerialization

Static reverse
mode auto-

differentiation
User specified
architecture

Training loop
(days)

Hardware
cost model

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Breaking the Memory Wall with Optimal Tensor Rematerialization

tion within the stage. That is, FREEt,i,k = 1 if and only if
vi can be deallocated in stage t after evaluating vk. Pred-
icating on Rt,k in (5) ensures values are onlyfreed once.
To express FREE in our ILP, (5) must be defined arithmeti-
cally with linear constraints. Applying De Morgan’s law
for union and intersection interchange,

FREEt,i,k = ¬

0

BB@¬Rt,k _ St+1,i

_

j2USERS[i]
j>k

Rt,j

1

CCA

=

0

@1�Rt,k + St+1,i +
X

j2USERS[i],j>k

Rt,j = 0

1

A

, (num_hazards(t, i, k) = 0) (6)

where num_hazards(t, i, k) is introduced simply for nota-
tional convenience. Relation (6) is implemented with linear
cast-to-boolean constraints, where is the maximum value
num_hazards(t, i, k) can assume,

FREEt,i,k 2 {0, 1} (7a)
1� FREEt,i,k num_hazards(t, i, k) (7b)

(1� FREEt,i,k) � num_hazards(t, i, k) (7c)

The complete memory constrained ILP follows in (8), with
O(|V ||E|) variables and constraints.

arg min
R,S, U, FREE

nX

t=1

tX

i=1

CiRt,i (1a)

subject to (1b), (1c), (1d), (1e),

(2), (3), (7a), (7b), (7c),

Ut,k Mbudget

(8)

4.5 Constraints implied by optimality

Problem 8 can be simplified by removing constraints im-
plied by optimality of a solution. In (2), all values with
St,i = 1 are allocated space, even if they are unused. If
such a value is unused, the checkpoint is spurious and the
solver can set St,i = 0 to reduce memory usage if needed.

Further, FREEt,k,k = 1 only if operation k is spuriously
evaluated with no uses of the result. Hence, the solver can
set Rt,k = 0 to reduce cost. When solving the MILP, we
eliminate |V |2 variables FREEt,k,k, assumed to be 0, by
only summing over i 2 DEPS[k] in (4). Note that the elim-
inated variables can be computed inexpensively from R and
S after solving.

4.6 Generating an execution plan

Given a feasible solution to (8), (R,S, FREE), we generate
a concrete execution plan that evaluates the computation

Algorithm 1 Generate execution plan
Input: graph G = (V,E), feasible (R,S, FREE)
Output: execution plan s1, . . . , sk

Initialize REGS[1 . . . |V |] = �1, r = 0.
for t = 1 to |V | do

for k = 1 to |V | do
if Rt,k then

// Materialize vk

emit %r = allocate vk
emit compute vk, %r
REGS[k] = r

r = r + 1
end if
// Free vk and dependencies
for i 2 DEPS[k] [{k} do

if FREEt,i,k then
emit deallocate %REGS[i]

end if
end for

end for
end for

graph with bounded memory usage. This execution plan,
or schedule, is constructed via a row major scan of the so-
lution matrices, detailed in Algorithm 1.

A concrete execution plan is a program consist-
ing of k statements P = (s1, . . . , sk), where
si 2 {allocate,compute,deallocate}. State-
ment %r = allocate v defines a virtual register for
the result of the operation corresponding to v, used to
track memory usage during execution. Such a register
must be allocated for v before an instance of statement
compute v, %r in the plan, which invokes the opera-
tion and generates an output value which is tracked by the
register %r. Finally, statement deallocate %r deletes
the virtual register, marks the output value for garbage col-
lection, and updates the tracked memory usage.

The execution plan generated by Algorithm 1 is further op-
timized by moving deallocations earlier in the plan if possi-
ble. For example, spurious checkpoints that are unused in a
stage can be deallocated at the start of the stage rather than
during the stage. Note that this code motion is unnecessary
as the solver guarantees that the unoptimized schedule will
not exceed the desired memory budget.

4.7 Generating static computation graph

For implementation, the concrete execution plan can either
be interpreted, or encoded as a static computation graph.
In this work, we generate a static graph G

0 = (V 0
, E

0)
from the plan, which is executed by a numerical machine
learning framework. See Section 6.2 for implementation

1.2x
speedup

• TF 2.0 / Keras Image classification & semantic segmentation architectures.
• Checkmate achieves up to 1.2x speedup over our best baseline heuristic

and finds schedules with the lowest memory usages.

What to checkpoint with skip
connections, multi-tower

architectures etc?

Representing a schedule
For flexibility, unroll schedule into stages.
Separately model checkpoints (𝑆) and computations (𝑅).

Computation matrix: Is operation 𝑖 computed in stage 𝑡?
Space-time schedule repr. generalizes checkpointing.
à Fine-grained control of evaluation + GC.

Our linear program accounts for &
constrains peak memory usage at
all points in time, using statically
known memory consumptions.

Checkmate traces fwd & bwd
graph and constructs optimization
problem using graph structure +
flexible search space.

Find the lowest cost schedule

which is valid (dependencies resident),

and has constrained memory usage.

Optimal 𝐑, 𝐔, and 𝐅𝐑𝐄𝐄 easy to compute given 𝐒.
à “Two-phase” rounding approximation works well.

For tractability, each stage is frontier-advancing:
à Op 𝑖 evaluated in stage 𝑖 for the first time.
à From 9 hr to 1.18 sec for certifiable optimality.

Model memory usage in each stage with recurrence.

arg min
R, S

n

Â
t=1

t

Â
i=1

CiRt,i (2a)

subject to
Rt,j Rt,i + St,i 8t 8(i, j) 2 E (2b)

St,i Rt�1,i + St�1,i 8t 2 {2, . . . , n} 8i (2c)
Âi S1,i = 0 (2d)

1T
Ren � 1 (2e)
R, S 2 {0, 1}n⇥n (2f)

Constraints encode boolean logical formulae for feasibility via arithmetic operations.

For admissibility, dependencies must be resident Constraint (2b) ensures that an oper-
ation is computed in stage t only if all dependencies are resident in memory. Dependencies
can either be recomputed or retained from the previous stage. That is, (Rt,j = 1) =)
(Rt,i = 1) _ (St,i = 1) if operation vj depends on operation vi. Similarly, Constraint (2c)
encodes (St,i = 1) =) (Rt�1,i = 1) _ (St�1,i = 1); checkpointing a value requires it to
either be computed or already be checkpointed.

Completion Guarantee Constraint (2e) ensures that the last node in the graph is com-
puted at one point in the schedule, thus guaranteeing that training progresses.

The infinite memory ILP has O(|V|2) binary decision variables and O(|V||E|) constraints.

4.3 Constraining Memory Utilization via Nonlinear Constraint

arg min
R, S, U

n

Â
t=1

t

Â
i=1

CiRt,i (3a)

subject to
Ut,0 = Âi

MiSt,i (3b)

Ut,k+1 = Ut,k � Âi
Mi ⇤ FREEt,i,k + Mk+1Rt,k+1 (3c)

Suppose Ut,k bytes of memory are utilized after possibly evaluating operation k. Before
evaluating operation k + 1, vk and dependencies (parents) of vk may be deallocated if no
longer used. Then, an output tensor for the result of operation k+ 1 is allocated, consuming
memory Mk+1. This yields recurrence (4), depicted in Figure 2:

Ut,k+1 = Ut,k � mem_freedt(vk) + Rt,k+1Mk+1, (4)

where mem_freedt(vk) expresses the amount of memory that can be freed by deallocating
vk and its parents, at stage t. This function can be defined in terms of auxiliary variable

8

Start of stage: Checkpoints use memory

arg min
R, S

n

Â
t=1

t

Â
i=1

CiRt,i (2a)

subject to
Rt,j Rt,i + St,i 8t 8(i, j) 2 E (2b)

St,i Rt�1,i + St�1,i 8t 2 {2, . . . , n} 8i (2c)
Âi S1,i = 0 (2d)

1T
Ren � 1 (2e)
R, S 2 {0, 1}n⇥n (2f)

Constraints encode boolean logical formulae for feasibility via arithmetic operations.

For admissibility, dependencies must be resident Constraint (2b) ensures that an oper-
ation is computed in stage t only if all dependencies are resident in memory. Dependencies
can either be recomputed or retained from the previous stage. That is, (Rt,j = 1) =)
(Rt,i = 1) _ (St,i = 1) if operation vj depends on operation vi. Similarly, Constraint (2c)
encodes (St,i = 1) =) (Rt�1,i = 1) _ (St�1,i = 1); checkpointing a value requires it to
either be computed or already be checkpointed.

Completion Guarantee Constraint (2e) ensures that the last node in the graph is com-
puted at one point in the schedule, thus guaranteeing that training progresses.

The infinite memory ILP has O(|V|2) binary decision variables and O(|V||E|) constraints.

4.3 Constraining Memory Utilization via Nonlinear Constraint

arg min
R, S, U

n

Â
t=1

t

Â
i=1

CiRt,i (3a)

subject to
Ut,0 = Âi

MiSt,i (3b)

Ut,k+1 = Ut,k � Âi
Mi ⇤ FREEt,i,k + Mk+1Rt,k+1 (3c)

Suppose Ut,k bytes of memory are utilized after possibly evaluating operation k. Before
evaluating operation k + 1, vk and dependencies (parents) of vk may be deallocated if no
longer used. Then, an output tensor for the result of operation k+ 1 is allocated, consuming
memory Mk+1. This yields recurrence (4), depicted in Figure 2:

Ut,k+1 = Ut,k � mem_freedt(vk) + Rt,k+1Mk+1, (4)

where mem_freedt(vk) expresses the amount of memory that can be freed by deallocating
vk and its parents, at stage t. This function can be defined in terms of auxiliary variable

8

Garbage collection

Temporary value

• Maximize batch size as proxy for resolution, model depth etc.
• With +1x overhead cap, Checkmate supports up to 5.1x larger batch sizes.

Prior work: Inflexible single
stage, checkpoint for life

Is operation 𝑖 stored
between stage 𝑡 − 1 and 𝑡?

Checkpoint matrix

Optimal SegNet
checkpoint matrix

Stage 1

Stage T

Op 1 Op N

Checkmate: Delete & recreate
checkpoints up to T−1 times

A
lexN

et,2012

V
G
G
19,2014

Inception
v3,2015

R
esN

et-152,2015

D
enseN

et-201,2016

R
esN

eX
t-101,2016

FC
N
8s,2017

Transform
er,2017

R
oB

E
R
Ta,2018

B
igG

A
N
,2018

0GB

5GB

10GB

15GB

P
er
-G
P
U
m
em

or
y
us
ag

e

GPU memory limit

?Your model à

Per-GPU
RAM

usage

One line of code for
memory-efficient

deep learning!

