
4.2 Formulating an Integer Linear Program assuming unlimited RAM

To represent admissible execution plans, we encode sequences of operation evaluations
via T ⇥ n binary decision variable matrices R and S that indicate whether a node is to be
computed and whether it is to be checkpointed at each point in evaluation. In each matrix,
column i corresponds to operation vi and row t defines the t-th stage of the schedule. In
our encoding, each operation can be evaluated at most once per stage.

Let Rt,i 2 {0, 1} be a binary variable, where Rt,i = 1 indicates that operation i should
evaluated in stage t. This computation has cost Ci � 0 in FLOPs or latency, and the result
of the operation consumes memory Mi � 0 in bytes.

Further, let St,i 2 {0, 1} indicate that the result of operation i should be retained in memory
at stage t � 1 until stage t, such that the result is available for use during stage t. This
generalizes checkpointing [16, 17, 26, 27, 28], as values can be retained and deallocated up
to T times in our schedules.

With arbitrarily many stages (large T), coupled with some memory deallocation policy
(Section 4.3), R and S are sufficient to express all admissible evaluation schedules for the
Weighted Rematerialization Problem. Informed by prior literature [16], a linear-chain
graph of n nodes can be evaluated with constant memory and O(n2) operations. Thus, we
use T = n stages, allowing schedules with O(n2) operations to be expressed. While this is
a simplifying assumption, in practice, n stages are sufficient for practical networks and
memory budgets in our experiments.

First, consider neural network evaluation on a processor with ample memory. Even
without a memory constraint, our solver must ensure that checkpointed and computed op-
erations have dependencies resident in memory. Minimizing the total cost of computation
across stages with dependency constraints yields objective (3a):

arg min
R, S, U, FREE

n

Â
t=1

t

Â
i=1

CiRt,i (1a)

subject to
Rt,j  Rt,i + St,i (1b)

St+1,i  Rt,i + St,i (1c)
Rt,t = 1 (1d)
Ut,i  budget (1e)

R, S, U 2 {0, 1}n⇥n (1f)
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Overview
• Problem: Limited memory prevents the development of 

new deep learning models, but compute is growing quickly.
• We tradeoff memory and compute with an optimal strategy 

for arbitrary DNN memory checkpointing.
• Formulation supports arbitrary DAGs and is both 

hardware-aware and memory-aware.
• Up to 5x higher batch sizes, 1.2x speedups.
• Integration with just one line of code.

3. Real DNNs are non-linear

2. Layer RAM usages vary

1. Layer runtimes vary

In VGG, 107x difference in 
early and late layer FLOPS.

Why are heuristics suboptimal?

Backprop space-time tradeoff
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• Most memory is used by activations, not parameters.
• Can reduce memory usage by deleting &

recomputing activations.

• This work: How to minimize recomputation while using 
less than the GPU memory budget?

Rematerialization ILP

Creating new applications with Checkmate
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tion within the stage. That is, FREEt,i,k = 1 if and only if
vi can be deallocated in stage t after evaluating vk. Pred-
icating on Rt,k in (5) ensures values are onlyfreed once.
To express FREE in our ILP, (5) must be defined arithmeti-
cally with linear constraints. Applying De Morgan’s law
for union and intersection interchange,

FREEt,i,k = ¬

0

BB@¬Rt,k _ St+1,i

_

j2USERS[i]
j>k

Rt,j

1

CCA

=

0

@1�Rt,k + St+1,i +
X

j2USERS[i],j>k

Rt,j = 0

1

A

, (num_hazards(t, i, k) = 0) (6)

where num_hazards(t, i, k) is introduced simply for nota-
tional convenience. Relation (6) is implemented with linear
cast-to-boolean constraints, where  is the maximum value
num_hazards(t, i, k) can assume,

FREEt,i,k 2 {0, 1} (7a)
1� FREEt,i,k  num_hazards(t, i, k) (7b)

(1� FREEt,i,k) � num_hazards(t, i, k) (7c)

The complete memory constrained ILP follows in (8), with
O(|V ||E|) variables and constraints.

arg min
R,S, U, FREE

nX

t=1

tX

i=1

CiRt,i (1a)

subject to (1b), (1c), (1d), (1e),

(2), (3), (7a), (7b), (7c),

Ut,k  Mbudget

(8)

4.5 Constraints implied by optimality

Problem 8 can be simplified by removing constraints im-
plied by optimality of a solution. In (2), all values with
St,i = 1 are allocated space, even if they are unused. If
such a value is unused, the checkpoint is spurious and the
solver can set St,i = 0 to reduce memory usage if needed.

Further, FREEt,k,k = 1 only if operation k is spuriously
evaluated with no uses of the result. Hence, the solver can
set Rt,k = 0 to reduce cost. When solving the MILP, we
eliminate |V |2 variables FREEt,k,k, assumed to be 0, by
only summing over i 2 DEPS[k] in (4). Note that the elim-
inated variables can be computed inexpensively from R and
S after solving.

4.6 Generating an execution plan

Given a feasible solution to (8), (R,S, FREE), we generate
a concrete execution plan that evaluates the computation

Algorithm 1 Generate execution plan
Input: graph G = (V,E), feasible (R,S, FREE)
Output: execution plan s1, . . . , sk

Initialize REGS[1 . . . |V |] = �1, r = 0.
for t = 1 to |V | do

for k = 1 to |V | do
if Rt,k then

// Materialize vk

emit %r = allocate vk
emit compute vk, %r
REGS[k] = r

r = r + 1
end if
// Free vk and dependencies
for i 2 DEPS[k] [ {k} do

if FREEt,i,k then
emit deallocate %REGS[i]

end if
end for

end for
end for

graph with bounded memory usage. This execution plan,
or schedule, is constructed via a row major scan of the so-
lution matrices, detailed in Algorithm 1.

A concrete execution plan is a program consist-
ing of k statements P = (s1, . . . , sk), where
si 2 {allocate,compute,deallocate}. State-
ment %r = allocate v defines a virtual register for
the result of the operation corresponding to v, used to
track memory usage during execution. Such a register
must be allocated for v before an instance of statement
compute v, %r in the plan, which invokes the opera-
tion and generates an output value which is tracked by the
register %r. Finally, statement deallocate %r deletes
the virtual register, marks the output value for garbage col-
lection, and updates the tracked memory usage.

The execution plan generated by Algorithm 1 is further op-
timized by moving deallocations earlier in the plan if possi-
ble. For example, spurious checkpoints that are unused in a
stage can be deallocated at the start of the stage rather than
during the stage. Note that this code motion is unnecessary
as the solver guarantees that the unoptimized schedule will
not exceed the desired memory budget.

4.7 Generating static computation graph

For implementation, the concrete execution plan can either
be interpreted, or encoded as a static computation graph.
In this work, we generate a static graph G

0 = (V 0
, E

0)
from the plan, which is executed by a numerical machine
learning framework. See Section 6.2 for implementation

1.2x
speedup

• TF 2.0 / Keras Image classification & semantic segmentation architectures.
• Checkmate achieves up to 1.2x speedup over our best baseline heuristic 

and finds schedules with the lowest memory usages.

What to checkpoint with skip 
connections, multi-tower 

architectures etc?

Representing a schedule
For flexibility, unroll schedule into stages.
Separately model checkpoints (𝑆) and computations (𝑅).

Computation matrix: Is operation 𝑖 computed in stage 𝑡?
Space-time schedule repr. generalizes checkpointing.
à Fine-grained control of evaluation + GC.

Our linear program accounts for & 
constrains peak memory usage at 
all points in time, using statically 
known memory consumptions.

Checkmate traces fwd & bwd
graph and constructs optimization 
problem using graph structure + 
flexible search space.

Find the lowest cost schedule

which is valid (dependencies resident),

and has constrained memory usage.

Optimal 𝐑, 𝐔, and 𝐅𝐑𝐄𝐄 easy to compute given 𝐒.
à “Two-phase” rounding approximation works well.

For tractability, each stage is frontier-advancing: 
à Op 𝑖 evaluated in stage 𝑖 for the first time.
à From 9 hr to 1.18 sec for certifiable optimality.

Model memory usage in each stage with recurrence.

arg min
R, S

n

Â
t=1

t

Â
i=1

CiRt,i (2a)

subject to
Rt,j  Rt,i + St,i 8t 8(i, j) 2 E (2b)

St,i  Rt�1,i + St�1,i 8t 2 {2, . . . , n} 8i (2c)
Âi S1,i = 0 (2d)

1T
Ren � 1 (2e)
R, S 2 {0, 1}n⇥n (2f)

Constraints encode boolean logical formulae for feasibility via arithmetic operations.

For admissibility, dependencies must be resident Constraint (2b) ensures that an oper-
ation is computed in stage t only if all dependencies are resident in memory. Dependencies
can either be recomputed or retained from the previous stage. That is, (Rt,j = 1) =)
(Rt,i = 1) _ (St,i = 1) if operation vj depends on operation vi. Similarly, Constraint (2c)
encodes (St,i = 1) =) (Rt�1,i = 1) _ (St�1,i = 1); checkpointing a value requires it to
either be computed or already be checkpointed.

Completion Guarantee Constraint (2e) ensures that the last node in the graph is com-
puted at one point in the schedule, thus guaranteeing that training progresses.

The infinite memory ILP has O(|V|2) binary decision variables and O(|V||E|) constraints.

4.3 Constraining Memory Utilization via Nonlinear Constraint

arg min
R, S, U

n

Â
t=1

t

Â
i=1

CiRt,i (3a)

subject to
Ut,0 = Âi

MiSt,i (3b)

Ut,k+1 = Ut,k � Âi
Mi ⇤ FREEt,i,k + Mk+1Rt,k+1 (3c)

Suppose Ut,k bytes of memory are utilized after possibly evaluating operation k. Before
evaluating operation k + 1, vk and dependencies (parents) of vk may be deallocated if no
longer used. Then, an output tensor for the result of operation k+ 1 is allocated, consuming
memory Mk+1. This yields recurrence (4), depicted in Figure 2:

Ut,k+1 = Ut,k � mem_freedt(vk) + Rt,k+1Mk+1, (4)

where mem_freedt(vk) expresses the amount of memory that can be freed by deallocating
vk and its parents, at stage t. This function can be defined in terms of auxiliary variable
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Start of stage: Checkpoints use memory

arg min
R, S

n

Â
t=1

t

Â
i=1

CiRt,i (2a)

subject to
Rt,j  Rt,i + St,i 8t 8(i, j) 2 E (2b)

St,i  Rt�1,i + St�1,i 8t 2 {2, . . . , n} 8i (2c)
Âi S1,i = 0 (2d)

1T
Ren � 1 (2e)
R, S 2 {0, 1}n⇥n (2f)

Constraints encode boolean logical formulae for feasibility via arithmetic operations.

For admissibility, dependencies must be resident Constraint (2b) ensures that an oper-
ation is computed in stage t only if all dependencies are resident in memory. Dependencies
can either be recomputed or retained from the previous stage. That is, (Rt,j = 1) =)
(Rt,i = 1) _ (St,i = 1) if operation vj depends on operation vi. Similarly, Constraint (2c)
encodes (St,i = 1) =) (Rt�1,i = 1) _ (St�1,i = 1); checkpointing a value requires it to
either be computed or already be checkpointed.

Completion Guarantee Constraint (2e) ensures that the last node in the graph is com-
puted at one point in the schedule, thus guaranteeing that training progresses.

The infinite memory ILP has O(|V|2) binary decision variables and O(|V||E|) constraints.

4.3 Constraining Memory Utilization via Nonlinear Constraint

arg min
R, S, U

n

Â
t=1

t

Â
i=1

CiRt,i (3a)

subject to
Ut,0 = Âi

MiSt,i (3b)

Ut,k+1 = Ut,k � Âi
Mi ⇤ FREEt,i,k + Mk+1Rt,k+1 (3c)

Suppose Ut,k bytes of memory are utilized after possibly evaluating operation k. Before
evaluating operation k + 1, vk and dependencies (parents) of vk may be deallocated if no
longer used. Then, an output tensor for the result of operation k+ 1 is allocated, consuming
memory Mk+1. This yields recurrence (4), depicted in Figure 2:

Ut,k+1 = Ut,k � mem_freedt(vk) + Rt,k+1Mk+1, (4)

where mem_freedt(vk) expresses the amount of memory that can be freed by deallocating
vk and its parents, at stage t. This function can be defined in terms of auxiliary variable
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Garbage collection

Temporary value

• Maximize batch size as proxy for resolution, model depth etc.
• With +1x overhead cap, Checkmate supports up to 5.1x larger batch sizes.

Prior work: Inflexible single
stage, checkpoint for life

Is operation 𝑖 stored
between stage 𝑡 − 1 and 𝑡?
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One line of code for 
memory-efficient 

deep learning!


