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Image generation

Brock et al. 2019
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Video generation

Sun et al. 2019
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Limited GPU memory is 
slowing progress in new 
deep learning models!

Chen et al. 2016
Gomez et al. 2017
Pohlen et al. 2017

Liu et al. 2019
Dai et al. 2019

Child et al. 2019

Cited memory as limiting factor
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Limited GPU memory is 
slowing progress in new 
deep learning models!

Chen et al. 2016
Gomez et al. 2017
Pohlen et al. 2017

Liu et al. 2019
Dai et al. 2019

Child et al. 2019

Cited memory as limiting factor

How do we efficiently train large
models beyond memory limits?

Problem:
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TOPS
per GiB
capacity

Compute is outstripping DRAM 
capacity growth
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Backprop is optimized for compute efficiency, not RAM usage
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RAM

Compute

Compute-optimized
backprop
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RAM

Compute

Compute-optimized
backprop

RAM-optimized
backprop

Ideal: scalable algorithm for backprop that adapts to RAM constraints
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This work: optimal space-time tradeoff for backpropagation
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RAM

Compute

Compute-optimized
backprop

Checkmate explores 
optimal trade-off

5x larger inputs w/ 2x cost

RAM-optimized
backprop



checkmateai.github.io10

RAM

Compute

RAM-hungry backprop policy
Keep all layers in RAM

Compute-optimized
backprop
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Peak RAM

RAM-hungry backpropagation policy
Keep all layers in RAM
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RAM

Compute

RAM-optimized backpropagation policy
Recompute all layers as needed

15

RAM-optimized
backprop
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Time
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How can we use less memory?
Free early & recompute

RAM-optimized backpropagation policy
Recompute all layers
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Label

Forward Pass

How to choose which layers to recompute?
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Label

Backward Pass

Forward Pass

How to choose which layers to recompute?



checkmateai.github.io23

Label

106×
slower

1. Variable runtime per layer

Challenges of heuristics:
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Label

1. Variable runtime per layer

Challenges of heuristics:

2. Variable RAM usage per layer

103×
more RAM
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Label

1. Variable runtime per layer

Challenges of heuristics:

2. Variable RAM usage per layer

3. Real DNNs are non-linear
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Prior work is suboptimal in general setting!
Greedy heuristic
[Chen 2016]
[XLA authors 2017, 2020]

Divide-and-conquer heuristic
[Griewank 2000]
[Kowarz 2006]
[Siskind 2018]
[Kumar 2019]

Optimal for specific architecture
[Gruslys 2016]
[Feng 2018]
[Beaumont 2019]

3. Real DNNs are non-linear

2. Variable RAM usage per layer

1. Variable runtime per layer

Challenges:
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RAM
Checkpoint
every node

Recompute 
all layers

Compute

Can we optimally trade-off RAM for compute?

3. DAG flexibility

2. RAM-aware

1. Hardware-aware

Let’s be:
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A system for optimal tensor rematerialization

AccXUaWe
cRVW mRdel

Fle[ible
VeaUch VSace

OSWimal VRlYeU
InWeger Linear Program

NeaU-RSWimal VRlYeU
TZo phaVe roXnding

GUaSh
UeZUiWe

Hardware + 
RAM aware

Solve for 10s-1hr 
Train for 1mo

GPU, CPU, 
TPU support
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A system for optimal tensor rematerialization

A B C ∇ C ∇ B ∇ A
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A system for optimal tensor rematerialization
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A B C ∇ C ∇ B ∇ A
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Layer

𝑅!,# ∈ {0, 1}
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A system for optimal tensor rematerialization

𝑅!,# ∈ {0, 1}

Stage

Layer
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A system for optimal tensor rematerialization

𝑅!,# ∈ {0, 1}

Stage
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A system for optimal tensor rematerialization

𝑅!,# ∈ {0, 1}

Stage

LayerLayer

𝑆!,# ∈ {0, 1}

R = What is 
computed?

S = What is in 
memory?
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A system for optimal tensor rematerialization

𝑅!,# ∈ {0, 1}

Stage

LayerLayer

𝑆!,# ∈ {0, 1}

Example of optimal “S” (SegNet)
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A system for optimal tensor rematerialization

Use R matrix to create linear objective

Layer 𝑖 (re)computed in stage 𝑡

Layer 𝑖 stored for stage 𝑡

𝑅!,# ∈ {0, 1}

𝑆!,# ∈ {0, 1}
Decision variables

min
+,,,-

$$𝐶. 𝑅/,.

Minimize forward +
backward cost
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A system for optimal tensor rematerialization

“A layer’s dependencies must 
be computed before evaluation”

“A layer must be computed 
before it can be stored in RAM”

Layer 𝑖 (re)computed in stage 𝑡

Layer 𝑖 stored for stage 𝑡

𝑅!,# ∈ {0, 1}

𝑆!,# ∈ {0, 1}
Decision variables

min
+,,,-

$$𝐶. 𝑅/,.

Minimize forward +
backward cost

𝑅!,$ ≤ 𝑅!,# + 𝑆!,#

𝑆!,# ≤ 𝑅!%&,# + 𝑆!%&,#

Correctness
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Layer 𝑖 (re)computed in stage 𝑡

Layer 𝑖 stored for stage 𝑡

𝑅!,# ∈ {0, 1}

𝑆!,# ∈ {0, 1}
Decision variables
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A system for optimal tensor rematerialization

Layer 𝑖 (re)computed in stage 𝑡

Layer 𝑖 stored for stage 𝑡

𝑅!,# ∈ {0, 1}

𝑆!,# ∈ {0, 1}
Decision variables

Memory usage in stage 𝑡𝑈!,# ∈ ℝ$

Constrain memory via an implicit variable 
to model memory usage at each stage

min
+,,,-

$$𝐶. 𝑅/,.

Minimize forward +
backward cost

𝑅!,$ ≤ 𝑅!,# + 𝑆!,#

𝑆!,# ≤ 𝑅!%&,# + 𝑆!%&,#

Correctness

𝑈!,' ≤ budget, …
Memory limit
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A system for optimal tensor rematerialization

Layer 𝑖 (re)computed in stage 𝑡

Layer 𝑖 stored for stage 𝑡

𝑅!,# ∈ {0, 1}

𝑆!,# ∈ {0, 1}
Decision variables

Memory usage in stage 𝑡𝑈!,# ∈ ℝ$

Constrain memory via an implicit variable 
to model memory usage at each stage

min
+,,,-

$$𝐶. 𝑅/,.

Minimize forward +
backward cost

𝑅!,$ ≤ 𝑅!,# + 𝑆!,#

𝑆!,# ≤ 𝑅!%&,# + 𝑆!%&,#

Correctness

𝑈!,' ≤ budget, …
Memory limit

Memory accounting 
details in paper
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A system for optimal tensor rematerialization

How long is the solve time?

9 hours 😳

min
+,,,-

$$𝐶. 𝑅/,.

Minimize forward +
backward cost

𝑅!,$ ≤ 𝑅!,# + 𝑆!,#

𝑆!,# ≤ 𝑅!%&,# + 𝑆!%&,#

Correctness

𝑈!,' ≤ budget, …
Memory limit
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A system for optimal tensor rematerialization

min
+,,,-

$$𝐶. 𝑅/,.

Minimize forward +
backward cost

𝑅!,$ ≤ 𝑅!,# + 𝑆!,#

𝑆!,# ≤ 𝑅!%&,# + 𝑆!%&,#

Correctness

𝑈!,' ≤ budget, …
Memory limit

Partition schedule into 
frontier-advancing stages

𝑅!,! = 1

𝑅, 𝑆, 𝑈 lower triangular

Tractability

9 hours → 0.2 seconds

Prunes n!
permutations

of nodes
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A system for optimal tensor rematerialization

AccXUaWe
cRVW mRdel
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ILP optimization is NP-hard (combinatorial search)

Polynomial-time approximation?

Proposed method: Two-Phase Rounding
Round S, solve other variables optimally

Insight: Given S, optimal 𝐑 easy to compute

1. Relax boolean constraints
2. Solve LP
3. Round solution

How to maintain feasibility?
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Evaluation: Questions

1. What is the memory vs compute trade-off?

2. How much can we increase batch/model size?

3. How well does two-phase rounding do?
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Checkmate

Checkmate

Evaluation: What is the memory vs compute trade-off?

Best 
heuristic

10 20
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Compute
Over�e�d (�)

GPU Memory available (GB)

U-Net, batch size 32

Best 
heuristic
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1��
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Compute
Over�e�d (�)

MobileNet, batch size 512

GPU Memory available (GB)

1.2x speedup!
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Evaluation: How much can we increase batch size? VGG19
224x224 images

Layer

𝑅!,#

Square root heuristic
Batch size 197

1.18x larger!

Stage

Layer

No rematerialization
Batch size 167

𝑅!,#

Layer

Checkmate
Batch size 289

1.73x larger! 10 sec solve

𝑅!,#
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Evaluation: How much can we increase batch size?

1.73x larger!

5.1x larger!
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Evaluation: How much can we increase batch size?

1.73x larger!

5.1x larger!

*Ongoing work: BERT
2.3x larger batch size over TF2.0

Train BERT-Large w/o model parallelism
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Figure 6. Maximum batch size possible on a single NVIDIA V100
GPU when using different generalized rematerialization strategies
with at most a single extra forward pass. We enable increasing
batch size by up to 5.1⇥ over the current practice of caching
all activations (on MobileNet), and up to 1.73⇥ over the best
checkpointing scheme (on U-Net).

For fair comparison on the non-linear graphs used in U-
Net, FCN, and ResNet, we use the AP

p
n and linearized

greedy baseline generalizations described in Section 6.1.
Let Mfixed = 2Mparam, as in (2) and let M@1 be the mem-
ory a baseline strategy uses at batch size 1. The maximum
baseline batch size is estimated with (11), where the mini-
mization is taken with respect to hyperparameters, if any.

max B =

�
16 GB � Mfixed

min M@1 � Mfixed

⌫
(11)

Costs are measured in FLOPs, determined statically. U-
Net, FCN8 and SegNet semantic segmentation networks
use a resolution of 416 ⇥ 608, and classification networks
ResNet50, VGG19 and MobileNet use resolution 224⇥224.

Takeaways: We can increase the batch size of U-Net to
61 at a high resolution, an unprecedented result. For many
tasks such as semantic segmentation, where U-Net is com-
monly used, it is not possible to use batch sizes greater than
16, depending on resolution. This is sub-optimal for batch
normalization layers, and being able to increase the batch
size by 3.8⇥ (61 vs 16 for a representative resolution) is
quite significant. Orthogonal approaches to achieve this
include model parallelism and distributed memory batch
normalization which can be significantly more difficult to
implement and have high communication costs. Further-
more, for MobileNet, Checkmate allows a batch size of
1105 which is 1.73⇥ higher than the best baseline solution,
a greedy heuristic, and 5.1⇥ common practice, checkpoint-
ing all activations. The same schedules can also be used to
increase image resolution rather than batch size.

APp
n

AP
greedy

Griewank
log n

Two-phase
LP rounding

MobileNet 1.14⇥ 1.07⇥ 7.07⇥ 1.06⇥
VGG16 1.28⇥ 1.06⇥ 1.44⇥ 1.01⇥
VGG19 1.54⇥ 1.39⇥ 1.75⇥ 1.00⇥

U-Net 1.27⇥ 1.23⇥ - 1.03⇥
ResNet50 1.20⇥ 1.25⇥ - 1.05⇥

Table 2. Approximation ratios for baseline heuristics and our LP
rounding strategy. Results are given as the geometric mean
speedup of the optimal ILP across feasible budgets.

6.5 How well can we approximate the optimal
rematerialization policy?

To understand how well our LP rounding strategy (Sec-
tion 5) approximates the ILP, we measure the ratio
COSTapprox/COSTopt, i.e. the speedup of the optimal sched-
ule, in FLOPs. As in Section 6.3, we solve each strategy at a
range of memory budgets, then compute the geometric mean
of the ratio across budgets. The aggregated ratio is used
because some budgets are feasible via the ILP but not via
the approximations. Table 6 shows results. The two-phase
deterministic rounding approach has approximation factors
close to optimal, at most 1.06⇥ for all tested architectures.

7 CONCLUSIONS

One of the main challenges when training large neural net-
works is the limited capacity of high-bandwidth memory
on accelerators such as GPUs and TPUs. This has created
a memory wall that limits the size of the models that can
be trained. The bottleneck for state-of-the-art model de-
velopment is now memory rather than data and compute
availability, and we expect this trend to worsen in the future.

To address this challenge, we proposed a novel rematerial-
ization algorithm which allows large models to be trained
with limited available memory. Our method does not make
the strong assumptions required in prior work, supporting
general non-linear computation graphs such as residual net-
works and capturing the impact of non-uniform memory
usage and computation cost throughout the graph with a
hardware-aware, profile-guided cost model. We presented
an ILP formulation for the problem, implemented the Check-
mate system for optimal rematerialization in TensorFlow,
and tested the proposed system on a range of neural network
models. In evaluation, we find that optimal rematerializa-
tion has minimal computational overhead at a wide range of
memory budgets and showed that Checkmate enables prac-
titioners to train high-resolution models with significantly
larger batch sizes. Finally, a novel two-phase rounding
strategy closely approximates the optimal solver.

Evaluation: How well does 2P rounding approximate ILP?

Within 6% of optimal cost (geomean)

43x speedup for ResNet50
440x speedup for MobileNet
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Checkmate
Key ideas:

• GPU memory limits are preventing the 
development of new deep learning models.

• We present the first general solution for optimal 
& near-optimal graph rematerialization.

• Formulation supports arbitrary DAGs and is 
both hardware-aware and memory-aware

• Integration with just one line of code

Code and paper:
checkmateai.github.io

Email me:
parasj@berkeley.edu

Paras Jain, Ajay Jain, Ani Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer, Ion Stoica, Joseph Gonzalez


