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Abstract—How to tell if a review is real or fake? What does
the underworld of fraudulent reviewing look like? Detecting
suspicious reviews has become a major issue for many online
services. We propose the use of a clique-finding approach to
discover well-organized suspicious reviewers. From a Yelp dataset
with over one million reviews, we construct multiple Reviewer
Similarity graphs to link users that have unusually similar
behavior: two reviewers are connected in the graph if they
have reviewed the same set of venues within a few days. From
these graphs, our algorithms extracted many large cliques and
quasi-cliques, the largest one containing a striking 11 users who
coordinated their review activities in identical ways. Among the
detected cliques, a large portion contain Yelp Scouts who are paid
by Yelp to review venues in new areas. Our work sheds light on
their little-known operation.

I. INTRODUCTION

Review-centric online services like Yelp1 and TripAdvisor
crowdsource the job of reviewing businesses. The popularity
and influence of reviews make such sites ideal targets for ma-
licious behaviors: businesses commission fraudulent reviews
to artificially boost their ratings. An estimated 16% of Yelp
restaurant reviews are fraudulent [1].

Identifying suspicious review behaviors is critical to main-
taining the integrity of online services and protecting their
users. However, this task is challenging, as fraudsters’ strate-
gies can change rapidly. Crowdsourcing services such as
Freelancer, Fiverr and Amazon Mechanical Turk are exploited
for recruiting experienced review writers at a massive scale
for nefarious purposes [2].

Recent research started to investigate network-based tech-
niques for uncovering organized fraud by analyzing the link
structures among potential fraudsters. For example, NetProbe
uses an inference algorithm to find “near bipartite cores”
formed among fraudsters and their accomplices on eBay [3].
More recently, Vlasselaer et al. find rectangles in bipartite
graphs to detect social security fraud [4].

Interestingly, even though cliques2 and quasi-cliques3 have
long been hinted as one of the strongest tell-tale signs of fraud,
no prior work has studied if they indeed exist in online review
websites like Yelp, where we can create a graph where each
node represents a user, and an edge connects two users if they
have reviewed common venues.

1http://www.yelp.com
2A complete sub-graph
3Synonymous with pseudo cliques
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Fig. 1: Example suspicious clique formed among reviewers,
found in a (6, 5)-graph extracted from the Yelp data. Two
reviewers are linked when they have reviewed the same 6
venues (or more) within 5 days.

Our first research goal is to mine such graphs for cliques
and quasi-cliques to verify the hypotheses from literature.
Our secondary goal is to study if such cliques are indeed
suspicious. Or relatedly, whether the (quasi-)clique structure
is a strong indicator for fraud, whether there may be false
convictions (e.g., any “good” cliques?), and if so, whether they
are common and what approaches can reduce them.

We describe our preliminary results, which show that even
from public data provided by Yelp, we can find large cliques
that involve as many as 11 users—intuitively, this means
that every possible pair of users (among these 11) reviewed
multiple common venues within only a few days apart (see
Figure 1). In practice, we should rarely see cliques of such
large sizes. Possibly, the only legitimate setting for that to
happen is that those 11 people are close friends or family
members who always go to the same places together and also
write reviews together!

II. EXTRACTING (QUASI-)CLIQUES

The Yelp Review Dataset. We use the dataset from the
Yelp Dataset Challenge 4, which contains 42,153 venues and
1,125,458 reviews. Yelp did not specify whether they filtered
the dataset but it would be reasonable to assume that they have
only included publicly listed reviews in the dataset.
Building K-D Graphs to Uncover Suspicious Links. We
extract a set of (k, d)-graphs from the raw Yelp data, originally
formatted as a list of JSON objects, varying the k and d

4http://www.yelp.com/dataset challenge



k Minimum number of commonly venues reviewed (by two
users)

d Maximum number of days between two reviews (written
for the same venue)

Node A Yelp Reviewer

Edge Connects two users who reviewed ≥ k same venues
within d days

TABLE I: (k, d)-graph definition (Reviewer Similarity Graph).

parameters. We define a (k, d)-graph to be an undirected
graph, where vertices represent users, and an edge5 exists
between two vertices if the corresponding users reviewed at
least k venues in common, and the reviews for each venue
were posted at most d days apart (see Table I).
(Quasi-)clique extraction. We extract cliques and quasi-
cliques from the set of (k, d)-graphs. Cliques are complete
sub-graphs of undirected graphs. Quasi-cliques are sub-graphs
with edge densities7 no less than a fixed threshold8 [5].

Identifying cliques is NP-hard. The Bron-Kerbosch algo-
rithm finds maximal cliques and is based on the Branch-
and-Bound technique. Most real-world datasets produce sparse
graph, allowing Bron-Kerbosch to find maximal cliques faster
than the theoretical worst case bound [6]. Suspiciously, large
cliques of up to size 11 were found in the Yelp dataset (see
Table II). Larger cliques with higher k (more venues) and
lower d values (tighter time bound) are more suspicious.

To extract quasi-cliques, we utilize the method presented
by Uno [5] which uses a greedy method to add nodes to the
current quasi-clique, such that the edge density of the quasi-
clique is greater than the threshold. Quasi-cliques of size 11
and 12 were found (see Table III).

5Edges can be weighted with a calculated similarity score between users
6Abbreviated table—some (k, d)-graphs not displayed.
7Number of edges that exist in sub-graph over number of edges in a

complete graph with same number of vertices.
8θ = 0.90

(k, d)-graph 3,5 3,6 3,8 4,5 4,6 5,5 5,6 6,5

9–clique 112 152 1040 29 73 13 28 10
10–clique 22 25 290 3 13 1 3 1
11–clique 2 2 50 — 1 — — —

TABLE II: Counts of large suspicious cliques, of sizes 9, 10,
and 11, found in select (k, d)-graphs6. The most suspicious
cliques are highlighted in red, due to large sizes, higher k
(more venues) and lower d values (tighter time bound).

(k, d)-graph 6,5 6,8 7,5 7,8 8,5 8,8 9,5

9–quasiclique 144 649 94 351 42 227 8
10–quasiclique 44 315 33 134 12 84 —
11–quasiclique 7 100 4 33 — 15 —
12–quasiclique 1 20 — 4 — 1 —

TABLE III: Counts of large suspicious quasi-cliques, of sizes
7, 8, 9, 10, 11 and 12 found in select (k, d)-graphs6. Suspicious
quasi-cliques highlighted in red.

Fig. 2: Graph of combined cliques in a weighted (6, 5)-graph
(weighted by size of the intersection of friends). Larger nodes
represent more reviews. Red nodes are Yelp Scouts while
white nodes are regular users. Scouts are tightly clustered and
appear to associate with other Scouts.

We manually inspected some flagged users, and were sur-
prised that they are Yelp Scouts9 who are paid by Yelp to
review venues in new areas. In the (6, 5)-graph, 31% of users
were/are Yelp Scouts. This is a significant discovery; no prior
study has revealed how these Scouts operate, how they choose
which venues to visit, and what kinds of reviews they write
(positive or negative)? Our work sheds light on these little-
known activities, which are highly organized both in timing
and in venue selection. While they may not be suspicious, they
are certainly unnatural, and possibly controversial!

III. CONCLUSIONS & NEXT STEPS

It is alarming to find large cliques from the Yelp data, which
are likely suspicious. Still, some might not be. And it is critical
that we devise methods that reduce the false alarm rates to the
minimum possible, as it is greatly harmful to wrongly convict
a good user. We plan to incorporate other rich signals from the
Yelp data to help with this, such as by analyzing review text,
and the spatial and temporal relationships among reviewed
venues (e.g., it would impossible for a user to visit a venue
in the US and another in Asia on the same day).
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9A user’s Yelp Scout status is determined from a badge on their profile


